3.2.73 \(\int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx\) [173]

3.2.73.1 Optimal result
3.2.73.2 Mathematica [A] (verified)
3.2.73.3 Rubi [A] (verified)
3.2.73.4 Maple [A] (warning: unable to verify)
3.2.73.5 Fricas [A] (verification not implemented)
3.2.73.6 Sympy [F]
3.2.73.7 Maxima [F]
3.2.73.8 Giac [F(-2)]
3.2.73.9 Mupad [F(-1)]

3.2.73.1 Optimal result

Integrand size = 27, antiderivative size = 290 \[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=-\frac {(c-d)^2 \tan (e+f x)}{2 a f (1+\sec (e+f x)) \sqrt {a+a \sec (e+f x)}}+\frac {2 c^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{\sqrt {a} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {(c-d)^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {2} \sqrt {a}}\right ) \tan (e+f x)}{2 \sqrt {2} \sqrt {a} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {\sqrt {2} \left (c^2-d^2\right ) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {2} \sqrt {a}}\right ) \tan (e+f x)}{\sqrt {a} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \]

output
-1/2*(c-d)^2*tan(f*x+e)/a/f/(1+sec(f*x+e))/(a+a*sec(f*x+e))^(1/2)+2*c^2*ar 
ctanh((a-a*sec(f*x+e))^(1/2)/a^(1/2))*tan(f*x+e)/f/a^(1/2)/(a-a*sec(f*x+e) 
)^(1/2)/(a+a*sec(f*x+e))^(1/2)-1/4*(c-d)^2*arctanh(1/2*(a-a*sec(f*x+e))^(1 
/2)*2^(1/2)/a^(1/2))*tan(f*x+e)/f*2^(1/2)/a^(1/2)/(a-a*sec(f*x+e))^(1/2)/( 
a+a*sec(f*x+e))^(1/2)-(c^2-d^2)*arctanh(1/2*(a-a*sec(f*x+e))^(1/2)*2^(1/2) 
/a^(1/2))*2^(1/2)*tan(f*x+e)/f/a^(1/2)/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x 
+e))^(1/2)
 
3.2.73.2 Mathematica [A] (verified)

Time = 5.22 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.61 \[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=\frac {-\sqrt {2} \left (5 c^2-2 c d-3 d^2\right ) \arcsin \left (\tan \left (\frac {1}{2} (e+f x)\right )\right ) \cos ^4\left (\frac {1}{2} (e+f x)\right ) \sec (e+f x) \sqrt {\frac {1}{1+\sec (e+f x)}}+8 c^2 \arctan \left (\frac {\tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\frac {1}{1+\sec (e+f x)}}}\right ) \cos ^4\left (\frac {1}{2} (e+f x)\right ) \sec (e+f x) \sqrt {\frac {1}{1+\sec (e+f x)}}-\frac {1}{2} (c-d)^2 \sin (e+f x)}{a f (1+\cos (e+f x)) \sqrt {a (1+\sec (e+f x))}} \]

input
Integrate[(c + d*Sec[e + f*x])^2/(a + a*Sec[e + f*x])^(3/2),x]
 
output
(-(Sqrt[2]*(5*c^2 - 2*c*d - 3*d^2)*ArcSin[Tan[(e + f*x)/2]]*Cos[(e + f*x)/ 
2]^4*Sec[e + f*x]*Sqrt[(1 + Sec[e + f*x])^(-1)]) + 8*c^2*ArcTan[Tan[(e + f 
*x)/2]/Sqrt[(1 + Sec[e + f*x])^(-1)]]*Cos[(e + f*x)/2]^4*Sec[e + f*x]*Sqrt 
[(1 + Sec[e + f*x])^(-1)] - ((c - d)^2*Sin[e + f*x])/2)/(a*f*(1 + Cos[e + 
f*x])*Sqrt[a*(1 + Sec[e + f*x])])
 
3.2.73.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.71, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 4428, 27, 198, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d \sec (e+f x))^2}{(a \sec (e+f x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (c+d \csc \left (e+f x+\frac {\pi }{2}\right )\right )^2}{\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4428

\(\displaystyle -\frac {a^2 \tan (e+f x) \int \frac {\cos (e+f x) (c+d \sec (e+f x))^2}{a^2 (\sec (e+f x)+1)^2 \sqrt {a-a \sec (e+f x)}}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\tan (e+f x) \int \frac {\cos (e+f x) (c+d \sec (e+f x))^2}{(\sec (e+f x)+1)^2 \sqrt {a-a \sec (e+f x)}}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 198

\(\displaystyle -\frac {\tan (e+f x) \int \left (\frac {\cos (e+f x) c^2}{\sqrt {a-a \sec (e+f x)}}+\frac {d^2-c^2}{(\sec (e+f x)+1) \sqrt {a-a \sec (e+f x)}}-\frac {(c-d)^2}{(\sec (e+f x)+1)^2 \sqrt {a-a \sec (e+f x)}}\right )d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\tan (e+f x) \left (\frac {\sqrt {2} \left (c^2-d^2\right ) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {a}}-\frac {2 c^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{\sqrt {a}}+\frac {(c-d)^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} \sqrt {a}}+\frac {(c-d)^2 \sqrt {a-a \sec (e+f x)}}{2 a (\sec (e+f x)+1)}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

input
Int[(c + d*Sec[e + f*x])^2/(a + a*Sec[e + f*x])^(3/2),x]
 
output
-((((-2*c^2*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]])/Sqrt[a] + ((c - d)^ 
2*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/(Sqrt[2]*Sqrt[a])])/(2*Sqrt[2]*Sqrt[a]) 
 + (Sqrt[2]*(c^2 - d^2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/(Sqrt[2]*Sqrt[a]) 
])/Sqrt[a] + ((c - d)^2*Sqrt[a - a*Sec[e + f*x]])/(2*a*(1 + Sec[e + f*x])) 
)*Tan[e + f*x])/(f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]))
 

3.2.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 198
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_))^(q_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c 
 + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, 
 m, n}, x] && IntegersQ[p, q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4428
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[a^2*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e 
 + f*x]]*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(a + b*x)^(m - 1/2)*((c + d 
*x)^n/(x*Sqrt[a - b*x])), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, 
 f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0 
] && IntegerQ[m - 1/2]
 
3.2.73.4 Maple [A] (warning: unable to verify)

Time = 3.46 (sec) , antiderivative size = 389, normalized size of antiderivative = 1.34

method result size
default \(-\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-4 c^{2} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right )-\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, c^{2} \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+2 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, c d \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d^{2} \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+5 c^{2} \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )-2 c d \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )-3 d^{2} \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{4 a^{2} f}\) \(389\)
parts \(\frac {c^{2} \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (4 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-5 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{4 f \,a^{2}}+\frac {d^{2} \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+3 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{4 f \,a^{2}}-\frac {c d \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{2 f \,a^{2}}\) \(504\)

input
int((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/4/a^2/f*(-2*a/((1-cos(f*x+e))^2*csc(f*x+e)^2-1))^(1/2)*((1-cos(f*x+e))^ 
2*csc(f*x+e)^2-1)^(1/2)*(-4*c^2*2^(1/2)*arctanh(2^(1/2)/((1-cos(f*x+e))^2* 
csc(f*x+e)^2-1)^(1/2)*(-cot(f*x+e)+csc(f*x+e)))-((1-cos(f*x+e))^2*csc(f*x+ 
e)^2-1)^(1/2)*c^2*(-cot(f*x+e)+csc(f*x+e))+2*((1-cos(f*x+e))^2*csc(f*x+e)^ 
2-1)^(1/2)*c*d*(-cot(f*x+e)+csc(f*x+e))-((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^ 
(1/2)*d^2*(-cot(f*x+e)+csc(f*x+e))+5*c^2*ln(csc(f*x+e)-cot(f*x+e)+((1-cos( 
f*x+e))^2*csc(f*x+e)^2-1)^(1/2))-2*c*d*ln(csc(f*x+e)-cot(f*x+e)+((1-cos(f* 
x+e))^2*csc(f*x+e)^2-1)^(1/2))-3*d^2*ln(csc(f*x+e)-cot(f*x+e)+((1-cos(f*x+ 
e))^2*csc(f*x+e)^2-1)^(1/2)))
 
3.2.73.5 Fricas [A] (verification not implemented)

Time = 6.47 (sec) , antiderivative size = 620, normalized size of antiderivative = 2.14 \[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=\left [-\frac {4 \, {\left (c^{2} - 2 \, c d + d^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - \sqrt {2} {\left ({\left (5 \, c^{2} - 2 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right )^{2} + 5 \, c^{2} - 2 \, c d - 3 \, d^{2} + 2 \, {\left (5 \, c^{2} - 2 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 3 \, a \cos \left (f x + e\right )^{2} + 2 \, a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) + 8 \, {\left (c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{8 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} + 2 \, a^{2} f \cos \left (f x + e\right ) + a^{2} f\right )}}, -\frac {2 \, {\left (c^{2} - 2 \, c d + d^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - \sqrt {2} {\left ({\left (5 \, c^{2} - 2 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right )^{2} + 5 \, c^{2} - 2 \, c d - 3 \, d^{2} + 2 \, {\left (5 \, c^{2} - 2 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) + 8 \, {\left (c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right )}{4 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} + 2 \, a^{2} f \cos \left (f x + e\right ) + a^{2} f\right )}}\right ] \]

input
integrate((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x, algorithm="fricas")
 
output
[-1/8*(4*(c^2 - 2*c*d + d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f 
*x + e)*sin(f*x + e) - sqrt(2)*((5*c^2 - 2*c*d - 3*d^2)*cos(f*x + e)^2 + 5 
*c^2 - 2*c*d - 3*d^2 + 2*(5*c^2 - 2*c*d - 3*d^2)*cos(f*x + e))*sqrt(-a)*lo 
g((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e) 
*sin(f*x + e) + 3*a*cos(f*x + e)^2 + 2*a*cos(f*x + e) - a)/(cos(f*x + e)^2 
 + 2*cos(f*x + e) + 1)) + 8*(c^2*cos(f*x + e)^2 + 2*c^2*cos(f*x + e) + c^2 
)*sqrt(-a)*log((2*a*cos(f*x + e)^2 + 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/ 
cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e 
) + 1)))/(a^2*f*cos(f*x + e)^2 + 2*a^2*f*cos(f*x + e) + a^2*f), -1/4*(2*(c 
^2 - 2*c*d + d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin 
(f*x + e) - sqrt(2)*((5*c^2 - 2*c*d - 3*d^2)*cos(f*x + e)^2 + 5*c^2 - 2*c* 
d - 3*d^2 + 2*(5*c^2 - 2*c*d - 3*d^2)*cos(f*x + e))*sqrt(a)*arctan(sqrt(2) 
*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e 
))) + 8*(c^2*cos(f*x + e)^2 + 2*c^2*cos(f*x + e) + c^2)*sqrt(a)*arctan(sqr 
t((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e)))) 
/(a^2*f*cos(f*x + e)^2 + 2*a^2*f*cos(f*x + e) + a^2*f)]
 
3.2.73.6 Sympy [F]

\[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=\int \frac {\left (c + d \sec {\left (e + f x \right )}\right )^{2}}{\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((c+d*sec(f*x+e))**2/(a+a*sec(f*x+e))**(3/2),x)
 
output
Integral((c + d*sec(e + f*x))**2/(a*(sec(e + f*x) + 1))**(3/2), x)
 
3.2.73.7 Maxima [F]

\[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=\int { \frac {{\left (d \sec \left (f x + e\right ) + c\right )}^{2}}{{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x, algorithm="maxima")
 
output
integrate((d*sec(f*x + e) + c)^2/(a*sec(f*x + e) + a)^(3/2), x)
 
3.2.73.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.2.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx=\int \frac {{\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )}^2}{{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \]

input
int((c + d/cos(e + f*x))^2/(a + a/cos(e + f*x))^(3/2),x)
 
output
int((c + d/cos(e + f*x))^2/(a + a/cos(e + f*x))^(3/2), x)